

Precise time. Synchronized.

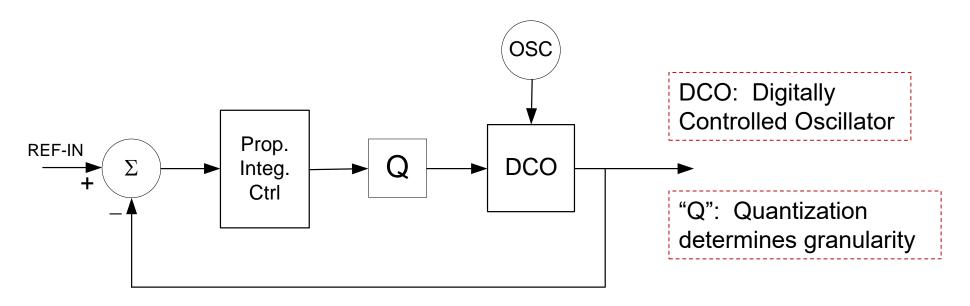
Regarding Simulation Models in Clocks ITSF 2017 Warsaw, November 2017

Kishan Shenoi CTO, Qulsar, Inc

Outline of Presentation

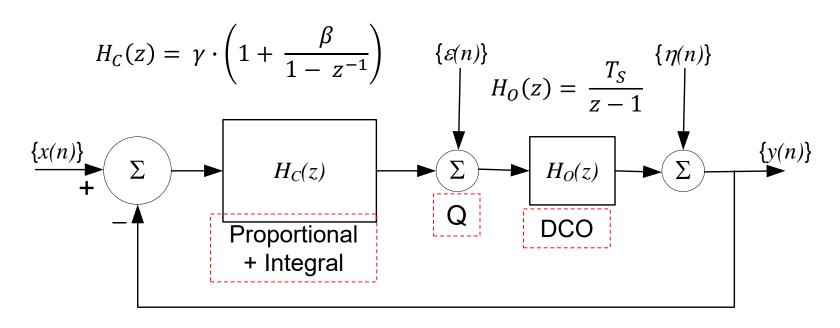
- The underlying premise:
 - Clock Recovery as a Closed Loop System
 - Time-series simulation (allows time-dependent factors)
- Simulating effect of temperature variation of oscillator
 - Oscillator noise sequence as function of temperature gradient (R), temperature coefficient (G), and ramp duration (T_R)
 - Time error for different ramp durations with normalized temperature slope ($G \cdot R = 1$ ppb/s)
- Concluding Remarks

Simplified view of a locked loop



- Locked Loops accept a reference signal
- An error is generated by comparing the output to the reference
- A suitable control algorithm (typically proportional + integral) generates a control value
- The DCO control is a quantized version of the ideal control value

DSP view of a locked loop (Time Domain)



- Update interval = T_S is equivalent to sampling interval
- Oscillator also adds noise $\{\eta(n)\}$ composed of:
 - Random component (typically white-FM)
 - Effect of aging
 - Effect of temperature

Analysis of the DSP based Locked Loop

$$H_{xy}(z) = \frac{\gamma T \cdot [(1+\beta)z - 1]}{z^2 - [2 - \gamma T \cdot (1+\beta)]z + (1 - \gamma T)}$$

$$H_{\varepsilon y}(z) = \frac{T \cdot [z-1]}{z^2 - [2 - \gamma T \cdot (1+\beta)]z + (1-\gamma T)}$$

$$H_{\eta y}(z) = \frac{z^2 - 2z + 1}{z^2 - (2 - \gamma T \cdot (1 + \beta)) \cdot z + (1 - \gamma T)}$$

Transfer Function from input (x) to output (y)

Transfer Function from quantizer (ε) to output (y)

Transfer Function from oscillator (η) to output (y)

- From input to output is low-pass; from oscillator to output is high-pass
- ▼ T: sampling interval (loop update interval)
- ▼ Time-series simulation achieved by:
 - Implementing transfer functions as difference equations
 - Creating suitable excitation signals $\{x(n)\}$ for input and $\{\eta(n)\}$ for oscillator noise and $\{\varepsilon(n)\}$ for quantization noise (if included in simulation)

Example of loop parameters

Typical loop filter:

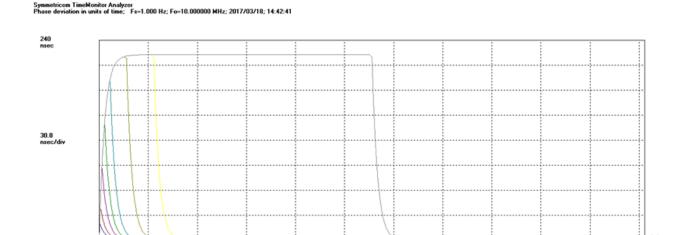
- 3dB frequency = 0.1Hz; gain peaking = 0.2dB
- Sampling frequency = 1Hz
- $\gamma T = 0.45 ; \beta = 0.01$

Simulating effect of temperature variation of oscillator

- Temperature variation : ramp with slope $R = 0.5^{\circ}$ /min
- Temperature coefficient : G = 1ppb / $^{\circ}$ C
- Ramp duration : T_R (min)
- Oscillator frequency is 0ppb prior to ramp start and $(G \cdot R \cdot T_R)$ ppb at ramp end and remains constant therefrom
- For convenience: normalize to $G \cdot R = 1$ ppb/s time error scales proportionally with $G \cdot R$
- Subsequent results provided for different ramp durations

Time error for different ramp duration

-30.0 nsec

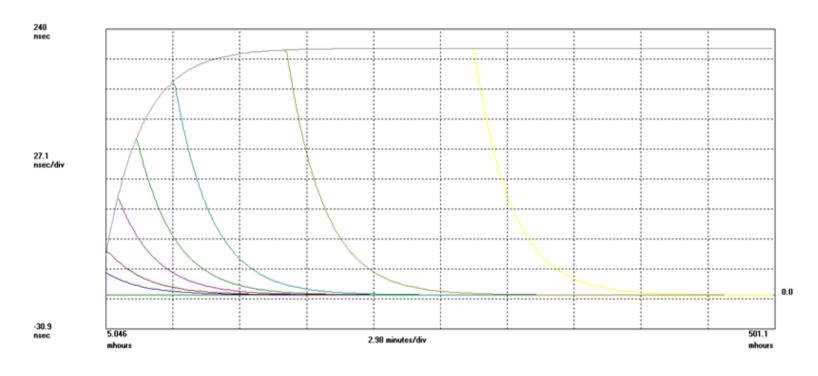


15.0 minutes/div

- NOTE: because the PTP layer is "locked" to its reference, the time error does go back to "zero"
- Worst case time error increases with T_R up to a point. The plateau is proportional to $G \cdot R$
- There is a plateau because of the second-order nature of the (time-layer) loop

Time error for different ramp duration

Symmetricom TimeMonitor Analyzer
Phase deviation in units of time; Fs=1.000 Hz; Fo=10.000000 MHz; 2017/03/18; 14:42:41



■ Zoom into first ~30min (~2000s)

Example:

Ramp duration (T _R) (seconds)	Max time error (normalized to <i>G·R</i> = 1ppb/s) in ns	Max. time error for $G \cdot R = 0.025$ ppb/s) in ns
10	21	0.5
20	40	10
50	87	22
100	141	35
200	193	48
500	221	55
1000	222	55
5000	222	55

Concluding Remarks

- ▼ Time-series simulation is a useful tool for analyzing behavior that has a time-varying aspect (e.g. temperature variation effect on oscillator)
- The second-order nature of the loop limits time-error for temperature ramps (subject to some assumptions)
- ◆ Acknowledgement.... Francois Maurice (Nokia) provided several insights as to next steps and suggestions to adapt the method to other situations

Questions? kshenoi@qulsar.com

1798 Technology Dr. Suite 139 San Jose, CA USA Torshamnsgatan 35 SE-164 40 Kista

Sweden

